Experimental study of glow discharge in light water with W electrodes

D.Y. Chung (1)(2), Y. Aoki (2), F. Senftle (1) and T. Mizuno (2) (1) Department of Physics, Howard University, Washington, D.C. 20059, USA

(2) Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Content

• Experimental

- Measurement; heat, hydrogen, gas composition and element
- Results
- Heat and element

Sketch of experimental set up

Photo of cell

Electrode

- The W wire; high purity (99.9%, Nilaco metals LTD).
- The cathode comprised a 1.5cm diameter and 15cm length of wire.

Before After

Electrolyte

• Light water; *purified through a milli-Q filter up to 18.3 Ohm-cm of resistively.*

• K2CO3 ; *Kanto Chem.CO., INC., 99.5%*

Out put power measurement

• The logger converted input levels into a digital format acceptable to the computer software and the input voltage was directly measured between the two electrodes of the cell.

Coolant flow meter

controller

Turbine meter: 0.0001g/s

Heat balance

- Input (J) = I (current) · V(Volt) · t
- **Out** = Hg + Hw + HC + Hr + Hv
- 1: Hg = Heat of decomposition = $\int 1.48 \cdot dI \cdot dt$
- 2: Hw = Electrolyte heat = $\int W_W \cdot C_W \cdot \delta T$
- Ww:electrolyte weight, Cw:heat capacity, δ T:temperature difference
- 3: Hc = Heat of coolant = $\int Wc \cdot Cc \cdot \delta T$
- Wc:coolant weight, Cc:heat capacity, δ T:temperature difference
- 4: Hr = Heat release = $\int (Ww \cdot Cw + Wc \cdot Cc)Tr$
 - *Tr:temperature change*
- 5: $Hv = vapor = Wv \cdot Cc$

Heat balance

Photos of gas analysis equipment

Mass flow

meter: model-3100 made by Kofloc Co

Mass flow controller: CR-700 Kofloc

Q-mass spectrum analyzer

Elements Analysis

EDX analyzer

ICP mass analyzer

Plasma W electrode 1.5ϕ ,30mm 220V,1.2A,90C Current efficiency;500%

Time changes of input Voltage, current and solution temperature

Time changes of various gas

Time changes of H₂ and O₂

Dependence of current efficiency on input V

Voltage dependence of excess H2

Photos of plasma at each voltages

Time change of power efficiency

Endothermic result

No excess heat

Excess heat generation

Characteristic element generation

- 1. Excess heat;
- Fe, Zn, Ca, Si: 2 --- 30 mg
- 2. No excess heat;
- Al, Cl, K, Cu: 2 --- 10mg
- 3. Endothermic;
- Ge, In, Ce, Dy: 5 --- 50mg

Difference of element distribution

Element distribution of Pd electrolyzed in D2O solution

Tetrahedral Symmetric Condensate: TSC

W186 (28.6%)

 ^{186}W + $4^{1}H$ \rightarrow

- \rightarrow ¹³⁶Xe + ⁵⁴Cr + 129.5MeV
- \rightarrow ¹⁴²Ce + ⁴⁸Ca + 114.6MeV
- \rightarrow ¹⁵⁰Nd + ⁴⁰Ar + 95.1MeV
- \rightarrow ¹⁵⁴Sm + ³⁶S + 89.5MeV
- \rightarrow ¹⁶⁰Gd + ³⁰Si + 78.3MeV

TSC for W184

184W $+ 4^{1}H \rightarrow 124$ Sn + 64Ni + 138.9MeV ^{130}Te + ^{58}Fe + 133.3MeV \rightarrow \rightarrow ¹³⁶Xe + ⁵²Cr + 124.9MeV ^{138}Ba + ^{50}Ti + 123.0MeV \rightarrow ¹⁴²Ce + ⁴⁶Ca + 110.9MeV \rightarrow 150 Nd + 38 Ar + 91.3MeV \rightarrow $^{154}Sm + ^{34}S + 85.7MeV$ \rightarrow $^{160}Gd + ^{28}Si + 72.7MeV$ \rightarrow

Results

- 1. Current efficiency for the H2 generation reached 8000% to the input current.
- 2. Power efficiency for the plasma electrolysis reached 20% to the input V.
- 3. In some cases, excess heat was observed.
- 4. In other cases, no and endothermic heat were confirmed.
- 5. The reaction products after electrolysis were changed with the heat balance.